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LETTER TO THE EDITOR 

Random space-f3ling-tiling: fractal properties and kinetics 
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t Depamnent of Physics, Moscow State Univmity, Moscow 119899, Russia 
t Center for Polymer Studies and Department of physics, Boston University, Boston, 
MA 02215, USA 

Received 15 March 1994 

Abstnet. A kinetic version of random Apollonian packing model is intraduced. In this model, 
droplets nucleate spontaneously, gmw at a uniform rate and stop growing upon collisions. The 
fr;iaal dimension, Df of the pow, space is found m be equal to Df = d(l - expp - (2d+z - 
2) / (d + 2)1), a result which is confirmed exactly in ID and numerically in m. . 

Pattern formation processes are numerous and include, e.g., diffusion-limited aggregation, 
dendritic growth, dielectric breakdown, solidification of supercooled liquids, growing and 
coalescing droplets [I-31. These moving-boundary problems are easy to formulate but 
extremely difficult to solve. Given the importance and complexity of 'non-equilibrium 
pattern fonhtion processes, it is interesting to investigate models which are ainenatile 
to theoretical analysis but nevertheless may mimic some features of pattern formation 
phenomena occurring in nature. In the present study, we descnk~one such model which is 
exactly soluble in one dimension and tractable on a mean-field level in arbitrary dimension 
d .  Based on the kinetic description, we then deduce geometric properties of arising patterns 
including the fractal dimension of the pore space. 

There are a number of pattern formation models in which the spacefilling pattems are 
formed by placing some non-overlapping units of smaller and smaller sizes. The oldest 
construction of this kind, the Apollonian packing (AP) introduced by Apollonius of Perga 
around 200 BC (see [I]), describes the filling of the space between three mutually touching 
discs by placing the disc that touches all three discs and then repeating this procedure 
iteratively [1,4]. The AP construction gives probably'the first scientific example of fractals. 
The exact value of its fractal dimension is still unknown although rigorous bounds [SI have 
been found and extremely precFe numerical estimates [6;7] have been recently reported. 
There are several generalizations of the AP [8-12], including the random AP also known 
under the name of space-filling-bearing, in which the centres of added discs are also chosen 
randomly. It has been speculated that (rindom) AP models may, mimic a variety of natural 
phenomena ranging from the motion of matter in' seismic gaps up tOsome aspects of 
turbulence (see [9,121). 

The growth velocity in the random AP model may be considered as infinitely large. 
Indeed, since the added disc touches the closest disc one can consider it as growing with 
an infinite rate before, collision. Thus the AP model is non-trivial only if a typical size of 
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the system is finite (e.g., if the process takes place in a hole between three touching discs 
or in a ship). 

In this letter we investigate the kinetic version of random AP without these drawbacks. 
In this model, the space filling is generated by spherical droplets which start to grow at a 
uniform rate from nucleation sites and stop growing upon collisions. The model'may be 
called the touch-and-stop model or the kinetic AP. Although the condition of non-overlapping 
resembles the random sequential adsorption model 1131 while other features of our model 
are similar to the Kolmogorov-Johnson-Mehl-Avrami nucleation and growth model [ 141 
both the kinetics and the resulting patterns in the present model are very different The most 
interesting property of the kinetic AP is an intimate relation between the fractal properties 
of arising patterns and the pattem formation kinetics. Namely, we will show that the fractal 
dimension can be expressed in terms of the exponent describing the long-time asymptotic 
behaviour of the fraction of uncovered volume. 

In general, the process of droplet formation proceeds either by spontaneous nucleation 
or by growth from initial centres of nucleation. In the latter case, the pattern formation 
continues until a jamming configuration where further gowth is impossible 1151. We will 
study the more interesting former model which leads to formation of fractal patterns. Note 
also that only the former model provides an adequate kinetic version of the AP model. 

Consider first the kinetic AP model in one dimension. We assume that seeds are nucleated 
with a constant rate r per unit length and then grow with constant velocity V. Following a 
procedure applied in [16,17] to nucleation and growth processes, let us first investigate an 
auxiliary 'one-sided' problem in which nuclei are scattered to the right and no nuclei are 
placed to the left of the origin. Denote by $(f) the probability that the origin is uncovered 
at time t in a one-sided problem. Thus, (-d$/dr)dt is the probability that the origin is 
covered during the time interval ( t .  f + dt) by some droplet. Such a droplet could have 
been nucleated at any point x in the spatial interval (0, Vt) between times t - x /  V and 
t f d t - x / V .  Hence 

Here rdxdt is the probability of nucleation of a droplet in the spatial interval (x ,  x + dx) 
during the time interval (t - x/V, t + dt - x/V). The exponential factor in the right-hand 
side of (1) is equal to the product of two factors exp[--?rx(f -x/V)]exp[-2rx2/V], 
where the former factor is the probability that no nucleations have occurred in the interval 
(0,2x) during the time interval (0, r - x /  V) while the latter factor is the probability of 
the same dunkg the time interval (z - x/V, f )  in the uncovered part of the spatial interval 
(0.2~). Finally, the last factor in the right-hand side of (1) ensures that droplets outside the 
interval (0,2x) do not stop a droplet covering the origin before time t .  

Computing the integral in the right-band side of (1) and then solving the resulting 
equation yields 

Notice that in the derivation of (1) and (2) we have tacitly assumed that the system is 
initially uncovered and therefore $(O) = 1. 

Let us now retum to the original 'two-sided' problem. Denote by @(t)  the probability 
that an arbitrary point, say the origin, is uncovered at time t .  Since @(t) is just the 
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probability for a point to be uncovered both from the right and from the left, @(t) is related 
with $ ( f f  by @ ( t )  = $(t)'. Using this relation one can find 

@ ( t )  = exp - dw e-' sinh-' p] . [ lT (3) 

In deriving (3) from (2) we used the variable o = rV(s;-s;) and performed the integration 
over sz. In (3) we denoted by T the square of dimensionless time, T = r V f 2 .  An asymptotic 
analysis of (3) shows that in the long-time limit, T >> 1, @(f) decays as' 

where y is the Euler's constant, y = 0.577 215.. .. 
One can obtain an exact expression for more complex correlation functions such as the 

probability that a droplet nucleated at time to continues growing at ti? f, t z & W ( t ,  9). 
It is not difficult to find that 

Y(t,  to) = exp[-ZrVto(t - f0)lexp -2r drV(t - 7 )  @(t)'. (5) 

Here the former exponential factor gives the probability that no particles have arisen in the 
interval of length 2V(t - fo) during the time interval (0.20) while the latter factor is the 
probability of the same during the time interval (fo, t )  in the uncovered part of the interval 
ZV(t -to). The factor @(@ gives the probability that the droplet which has been nucleated 
at time to at the centre of the interval 2V(t - to) had not been stopped up to time t by 
collisions, neither from the right nor from the left. Thus we arrive at 

[.l I 

~ ( t , t , , )  = exp[-rV(t2 - t3]@(t) (6) 

with @(t) given by (3). Using function Y(1.k) one can further find the density, G(L, t). 
of droplets of length L which stopped their growth before time f: 

Here t2 is the time at which the droplet was nucleated, t l  is the time at which the droplet 
reached the length L and stopped its growth, tl = tz + L/2V < 2. Substituting (6) into (7) 
gives 

By inserting the asymptotic result (4) and (8) one can find that for sufficiently small 
dimensionless length, L m  << 1, the final density of intervals of length L, G,(L), 
behaves as 
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Equation (9) will be used below to calculate the fractal dimension of one-dimensional 
pattems. 

In a recent study 1151, we developed a mean-field theory of the kinetic AP model in 
arbihaq dimension d. We now sketch some of these results which will be used below. 
Notice that the definition of functions @(t) and Y(t, to) implies 

Y(f, t )  = @(t). (10) 

Since the growing droplets are spherical the functions @(t)  and W ( i ,  to) are related by 
equation 

d@ - = - p  
dt Y(t ,  to)(? - to)d-’dto. 

Here we have introduced the shofi-hand notation p = r!&Vd, where Qd = 27rdIZ/r(d/2) 
is the surface area of a d-dimensional unit sphere with r(d/2) being the Euler gamma 
function. 

Equations (10) and (11) are exact. In [15], we completed the system (lOj(11) by 
approximate equation 

with B = (2d+2 -2)/(d+2) -2 and A = exp(-B). A derivation of this equation is similar 
to the derivation of corresponding exact result (5); in one dimension, (12) coincides with 
(5). In higher dimensions, (12) ignores multidroplet correlations and thus provides only a 
mean-field description. Note also that (12) guarantees that the initial condition (10) holds 
manifestly. 

Substituting (12) into (11) we arrive at the closed-form equation for the single variable 
@(t) :  

Analysing (13) one can find that in the long-time limit the main contribution to the 
i n t e a  accumulates near the upper limit, to + i .  Computing the integral asymptotically 
one finds 

d@ 
i t  = -A@exp[BQ]. (14) 

The solution to this equation decays as a power-law. Writing the final result in manifestly 
dimensionless form we obtain 

A dimensionless constant C = C(d) should be determined from complete analysis of (13); 
in one dimension, (4) shows that C(1) = exp(y/2) = 0.374653.. .. 
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Making use of function Y(z, to) one can compute the final density, G,(r), of droplets 
. of radius r :  

Here to is the time at which the droplet was nucleated, t is the time at which the droplet 
reached the radius r and stopped its growth. 

Ifone inserts theexpression for Y ( f ,  to), given by (12). into (16) one finds acumbersome 
final result for the density G,(r). However, for our primary goal, i.e., for obtaining the 
fractal dimension, we must know the behaviour of G,(r) only for small radii. This most 
important part of the distribution is accumulated in the long-time limit. Using the asymptotic 
behaviour (15) and keeping only the most significant contribution in the integral in (16) we 
obtain 

G,(r) N dCAQf'r(2 - A)(r/V)Ad/(d+l)r- '-d('-A). (17) 

We can now determine the fractal dimension, Df. of the pore space by introducing 
a (dimensionless) cut-off size, E, and wlculating the  number^ of droplets per unit volume, 
N ( E ) ,  with dimensionless radii greater than E. (The unit of length in d dimensions is equal 
to (V/ r)'/Cd+l).) When this number behaves as a power law at the small size limit 

N ( E )  = G,(r)dr,- C D r  (18) 

we conclude that the fractal dimension is Df: Notice that the porosity S(~),~e.g., the empty 
volume, behaves as 

1- 

By comparing (17) and (18) or (19) one can derive the final result for the fractal 
dimension: 

D f = d ( l - A ) = d  ( 1-exp , [. 2 -  23). 
Ford = 1 we have Of = 0; N ( E )  in one dimension diverges logarithmically, N ( E )  - In(€). 
This asymptotic result might be derived by using the complete analytical solution (8) for 
the density G,(L). For other dimensions (20) provides a mean-field answer. In particular, 
for d = 2 (20) gives Of = 2(1 - e-3/2) = 1.553 74.. .. 

We performed numerical simulations in two dimensions with periodic boundary 
conditions. The maximum dimensionless time in simulations was equal to 16M). (The units 
of time and length in 2~ are (rV2)-''3 and ( V / r ) ' l 3 ,  respectively.) We found that the 
fraction of uncovered area, O(t), decays as a power-law with the exponent A = 0.22f0.01 
very close to the mean-field result, A = eW3j2 = 0.223 130.. . (see (15)). From the plot of 
In(N(6)) versus In(€) (see figure 1) we determined the fractal dimension of final pattem, 
Df N 1.528, and again obtained an unexpectedly good agreement with the mean-field 
prediction. 

In summary, we have introduced the kinetic Ap model and obtained the intimate 
relationship between the fractal dimension Of of the arising patterns and the kinetic exponent 
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Figure 1. The plot of l n [ N ( ~ ) ]  versus In(€) where N ( E )  is the number of discs pr unit area 
with radii greater ulan E. The small-scale slope indicates that the fractal dimension of the pore 
space is 1.528. 

A describing the pattem formation kinetics. Although our results are exact only in one 
dimension, a surprisingly g o d  agreement between theory and simulations in two dimensions 
suggests that OUT main findings are valid in arbitmy dimension. 
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